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Abstract

High-speed trains can generate strong vibrations that propagate away from the track. In this paper, an
efficient method is presented to calculate the displacements generated by a train moving over an
embankment. It is based on a domain-type integral equation which is solved numerically with the use of
slowness-domain techniques. By expressing the field in terms of reflection and transmission properties of
the layers, the effects of stratification of the embedding medium are taken into account. The results are
compared to actual measurements and agree qualitatively.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Intensive ground vibrations can be generated by high-speed trains and can cause annoyance to
the public living or working in the vicinity of the track. Particularly in soft-soil regions, where the
train speed may approach or even exceed the surface-wave speed, a high vibration level can occur.
In recent years, the generation of vibrations due to high-speed trains has received considerable
attention. Several methods have been developed to predict the vibrations generated by trains
moving over an embankment.
Krylov [1] investigated the effect of track dynamics on the vibrations due to high-speed trains.

The vibrations generated by the bending track were computed with the aid of a Green’s function
formulation and its far-field asymptotic behaviour in an elastic half-space. For trains travelling at
a lower speed than the Rayleigh wave in the half-space, the presence of sleepers appeared to be
essential for the generation of vibrations. An increased effect on the level of ground vibration
occured for trains travelling at trans-Rayleigh speed.
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Sheng et al. [2,3] investigated the vibrations of a harmonic load moving over a layered ground.
The track, including rails, rail pads, sleepers and ballast, was modelled by means of a multi-
component mass–spring system. The ground was modelled as a structure of three-dimensional
viscoelastic layers overlying either a half-space or a rigid foundation. From several calculations, it
was shown that propagating waves were produced for loads travelling with a velocity higher than
the critical wave speed. It was shown that both constant and harmonic loads contribute
significantly to the vibrations generated by the train.
In Suiker et al. [4], the track has been modelled by means of a Timoshenko beam, laying over a

half-space. Both subcritical and supercritical train speeds were investigated. It was found that the
response of the system was greatly amplified when a critical state was reached, and that it is
depends on the stiffness of the model. They concluded that when a railway track consists of soft-
soil bases, the dynamic amplifications may cause unstable vehicle behaviour.
Metrikine and Popp [5] have investigated the vibrations of a periodically supported beam on an

elastic half-space under the influence of a uniformly moving harmonically varying load. The half-
space was replaced by a set of springs placed under the support of the beam. By using the
equivalent stiffness of these springs it was found that the displacements depended on the
frequency of the beam vibrations and on the phase shift of neighbouring supports. Moreover, it
was found that a load moving with the Rayleigh wave speed caused a resonance in the system.
In the present paper, the influence of a rail embankment is investigated, where the embankment

is embedded in the layered half-space. The model is an extension of the model previously
presented by the authors in Ditzel et al. [6], where the response of a layered half-space to a moving
(high-speed) train was investigated. In that approach, the train was modelled by means of a
vertical, oscillating point source, moving over a horizontally layered, three-dimensional elastic
half-space with a traction-free surface. By considering the moving source as a superposition of
point forces, the wave field could be efficiently calculated in the slowness domain.
This model is extended here by including an embankment into the geometry. The mass density

of the embankment differs from the density of the surrounding medium, and, as a consequence,
both compressional and shear wave velocities are different. The scattering problem for a
stationary source can then be formulated in terms of a domain-integral equation. Due to linearity
of the resulting problem, it remains possible to apply the superposition principle and take full
advantage of the efficient way of formulating the vibration problem for the moving source in
terms of plane waves.
The numerical results have been compared with experimental data. The results come from a

multi-receiver field experiment, consisting of three lines with three component or vertical
geophones. Receivers have been placed both near to and far from the railway track, in order to
measure the transfer of waves into the surrounding medium. Several train passages have been
recorded and some are presented in this paper.

2. Formulation of the problem

In this section, the mathematical model is discussed. A notation similar to the one presented in
Ditzel et al. [6] is used. First, the equations for wave propagation in the embedding medium are
described briefly, then a description of a moving source follows and, finally, the formulation of the
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domain-integral equation is given. For a more detailed description of the modelling of the
embedding medium and force, the reader is referred to Ref. [6].

2.1. The layered embedding

The train is modelled as a point force which moves over an embankment, embedded in a semi-
infinite elastic medium. This medium consists of N homogeneous and horizontal layers overlying
a homogeneous elastic half-space. Fig. 1 shows a schematic model of a one-layer geometry. Each
of the media is characterized by its density rn and by its compressional and shear wave velocities
an and bn; with n indicating the layer number (n ¼ 1;N þ 1). The wave velocities are assumed to
be complex (with RefangX0 and Imfangp0 and similarly for bn) in order to take dissipation into
account. A traction-free boundary condition is imposed at the surface of the medium and the
radiation condition is imposed in the underlying half-space.
For each of the N layers, the elastic state is characterized by the following two equations:

@itijðxÞ þ o2rnujðxÞ ¼ �fjðxÞ; ð1Þ

tijðxÞ � lndij@kukðxÞ � 2mn@iujðxÞ ¼ 0 for n ¼ 1;N þ 1; ð2Þ

with uj being the displacement and tij the stress tensor. Furthermore, x is a position vector, given
by x ¼ xi1 þ yi2 þ zi3 and o is the angular frequency of the Fourier transform. In Eq. (1), fj is the
force to model the train, which moves with a constant velocity c in the x direction. In Eq. (2), ln
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embankment D: The rail embankment is embedded in a horizontally layered medium. (b) Cross-section of the geometry.
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and mn are Lam!e coefficients. In the previous and following equations, the summation convention
is followed for the lower indices, except for those indicating layer numbering for the soil
parameters.

2.2. Moving sources

Fig. 1 shows two reference frames, one is stationary with respect to the ground, given by the co-
ordinates x; and one co-moving with the train, given by x0: Eqs. (1) and (2) are given with respect
to the stationary reference frame. In order to study the wave field generated by a moving train, a
relation between the forces observed in the train and the forces observed in the ground has to be
found. In Ref. [6], the authors have shown that the moving train is actually a moving point source,
which can be represented by a superposition of stationary point sources, having appropriate
phases. The following equation was found for the force in the frame of reference which is
stationary with respect to the ground

fjðxÞ ¼
1

c

Z
xs

dxs
%fjðx� xsÞe jðo=cÞxs cos

oc

c
xs

� �
; ð3Þ

where fjðxÞ is the moving source in the stationary reference frame, and %fjðx� xsÞ ¼ ajdðx� xsÞ a
point source, exerted at position xs ¼ ðxs; 0; 0Þ; and having strength aj: The oscillatory behaviour
of the train, caused by irregularities in the track and the wheels, is represented by the resonance
frequency oc: For convenience, the o-dependence of fj has been omitted.
By using a complex notation for the cosine term in Eq. (3), the source term in the stationary

frame of reference can be written as the sum of two terms

fjðxÞ ¼ 1
2
ð f þ

j ðxÞ þ f �
j ðxÞÞ; ð4Þ

where

f 7
j ðxÞ ¼

1

c

Z
xs

dxs
%fjðx� xsÞe j½ðo7ocÞ=c
xs : ð5Þ

Similarly, the wave field uj; generated by the moving source fj; can also be expressed as the sum of
two wave fields:

ujðxÞ ¼ 1
2
ðuþ

j ðxÞ þ u�
j ðxÞÞ: ð6Þ

The wave fields u7j are generated by the forces f 7
j ; respectively, and can be obtained by

superposition of wave fields %uj:

u7
j ðxÞ ¼

1

c

Z
xs

dxs %ujðx� xsÞe j½ðo7ocÞ=c
xs ; ð7Þ

where %uj is the wave field generated by a stationary point force %fj: The omega dependence of %uj and
uj has been omitted for convenience.

ARTICLE IN PRESS

A. Ditzel, G.C. Herman / Journal of Sound and Vibration 271 (2004) 937–957940



Eq. (7) is rewritten as follows:

u7
j ðxÞ ¼

1

c

Z
xs

dxs %ujðx � xs; y; zÞe jop7
1

xs ð8Þ

¼
1

c
e jop7

1
x

Z
*x

d *x %ujð *x; y; zÞe�jop7
1
*x with *x ¼ x � xs; ð9Þ

where p7
1 ¼ ð17oc=oÞ=c: The integral in the last equation can be seen as a forward slowness

transform from the ðx; y; zÞ domain (i.e., the spatial domain) to the ðp1; y; zÞ domain (i.e., the
slowness-space domain). Thus, the displacement reads

u7j ðxÞ ¼
1

c
e jop7

1
x *ujðp71 ; y; zÞ; ð10Þ

where *ujðp
7
1 ; y; zÞ is the slowness transform in the x direction of %ujðx; y; zÞ; the wave field for a

stationary force.

2.3. Domain-integral equation formulation

In order to derive an expression for the total wave field generated by a moving force, the
derivation of the wave field %uj for a non-moving source %fj is treated first. Once an expression for
the wave field of a non-moving source has been found, use can be made of Eq. (7) to find the wave
field uj; generated by the moving source fj:
In Fig. 1a, the geometry of the problem has been sketched. The embankment occupies a

subdomain D of an elastic layered half-space. It is bounded in the directions perpendicular to the
track and unbounded in the direction parallel to the track. Inside the embankment, the wave field

%uj; generated by a stationary force %fj; satisfies the following equations:

@i %tijðxÞ þ o2rðxÞ %ujðxÞ ¼ � %fjðxÞ; ð11Þ

%tijðxÞ � l1dij@k %ukðxÞ � 2m1@i %ujðxÞ ¼ 0 ðxADÞ: ð12Þ

In the above equation, the stationary force %fj accounts for the interaction between the train and
the rail embankment. By imposing continuity of the displacement and the stress, the interaction
between the embankment and the surrounding medium is accounted for. As such, the interaction
between the embankment and the embedding medium is accounted for intrinsically by the
formulation of the problem. It is assumed that the Lam!e parameters in the embankment, located
in the top layer of the embedding medium, are the same as the parameters of this embedding layer.
This simplifies the problem, but as a contrast in wave velocities between the embankment and its
embedding medium can be accounted for by a density contrast, it may give a qualitative insight
into the influence of the embankment on the vibration level. The basic equations for the wave field
outside the embankment read

@i %tijðxÞ þ o2rn %ujðxÞ ¼ 0; ð13Þ

%tijðxÞ � lndij@k %ukðxÞ � 2mn@i %ujðxÞ ¼ 0 ðxAD0 and n ¼ 1;N þ 1Þ; ð14Þ

where use has been made of the fact that no sources are present outside the embankment.
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The wave field is considered to be made up of an incident field and a scattered field. The
incident wave field %uinc

j is defined as the field that would be present in the absence of
the embankment (i.e., if the position of the embankment were to be occupied by the same soil as in
the top layer). The scattered field %usc

j accounts for the embankment. Inside the embankment, the
incident wave field thus satisfies the following equations:

@i %tinc
ij ðxÞ þ o2r1 %u

inc
j ðxÞ ¼ � %fjðxÞ; ð15Þ

%tinc
ij ðxÞ � l1dij@k %u

inc
k ðxÞ � 2m1@i %u

inc
j ðxÞ ¼ 0 ðxADÞ; ð16Þ

where the embankment is located in the top layer. Therefore, the wave equations for the incident
field have been set up with soil properties which are equal to those of the top layer. Outside the
embankment, the incident field satisfies similar, but source-free equations:

@i %tinc
ij ðxÞ þ o2rn %u

inc
j ðxÞ ¼ 0; ð17Þ

%tinc
ij ðxÞ � lndij@k %u

inc
k ðxÞ � 2mn@i %u

inc
j ðxÞ ¼ 0 ðxAD0 and n ¼ 1;N þ 1Þ: ð18Þ

By rewriting Eq. (11), the following system of equations for the wave field inside the embankment
is obtained:

@i %tijðxÞ þ o2r1 %ujðxÞ ¼ � %fjðxÞ � o2ðrðxÞ � r1Þ %ujðxÞ; ð19Þ

%tijðxÞ � l1dij@k %ukðxÞ � 2m1@i %ujðxÞ ¼ 0 ðxADÞ: ð20Þ

By subsequently subtracting Eqs. (15) and (16) from Eqs. (19) and (20), the equations for the
scattered wave field inside the embankment are obtained

@i %tsc
ij ðxÞ þ o2r1 %u

sc
j ðxÞ ¼ �o2ðrðxÞ � r1Þ %ujðxÞ; ð21Þ

%tsc
ij ðxÞ � l1dij@k %u

sc
k ðxÞ � 2m1@i %u

sc
j ðxÞ ¼ 0 ðxADÞ: ð22Þ

Outside the embankment, the wave equations for the scattered field are obtained by subtracting
Eqs. (17) and (18) from Eqs. (13) and (14).
The incident field is generated by the volume source term %fjðxÞ; whereas the scattered wave field

is caused by the source term o2ðrðxÞ � r1Þ %ujðxÞ: Now, an integral representation for the wave field
generated by a stationary point source can be derived

%ujðxÞ ¼ %u
inc
j ðxÞ þ

Z
D

dV ð *xÞo2ðrð *y; *zÞ � r1Þ %u
G
jkðx; *xÞ %ukð *xÞ; ð23Þ

with

%uinc
j ðxÞ ¼

Z
D

dVð *xÞ %uG
jkðx; *xÞ %fkð *xÞ; ð24Þ

with the density contrast only depending on the co-ordinates perpendicular to the track
(i.e., rðx; y; zÞ ¼ rðy; zÞ). For more details, the reader is referred to Pao and Varatharajulu [7],
where representations similar to Eqs. (23) and (24) can be found in somewhat different form.
In Eq. (23), %uG

jkðx; *xÞ represents the Green’s tensor, which is the wave field generated by a non-
moving point force, exerted at position *x and observed at position x: It satisfies the following
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elastodynamic wave equations:

@i %tG
ijlðx; *xÞ þ o2rn %u

G
jl ðx; *xÞ ¼ �djldðx� *xÞ; ð25Þ

%tG
ijlðx; *xÞ � lndij@k %u

G
klðx; *xÞ þ 2mn@i %u

G
jl ðx; *xÞ ¼ 0 ðn ¼ 1;N þ 1Þ; ð26Þ

where dðx� *xÞ denotes a three dimensional unit pulse, and djl the Kronecker delta. For
convenience, in Eqs. (25)–(26), the o-dependence of %uG

jl has been omitted.

In Section 2.2, it has been shown that the wave field generated by a moving source can be
obtained by superposition of wave fields generated by a stationary point force. Application of the
same method as outlined in Eqs. (8)–(10) to Eq. (23) results in the following integral
representation of the wave field in terms of slowness p71 :

*ujðp71 ; y; zÞ ¼ *uinc
j ðp7

1 ; y; zÞ þ
Z

D>
dy0dz0Drðy0; z0Þo2

� *uG
jkðp

7
1 ; y � y0; z; z0Þ *ukðp71 ; y0; z0Þ; ð27Þ

with the mass density contrast given by Drðy0; z0Þ ¼ rðy0; z0Þ � r1: The domain integration
is only performed over D>; a cross-section of the embankment (see Fig. 1b). In Eq. (27),
*uk and *uG

jk are the slowness transforms with respect to the x co-ordinate of uk and uG
jk:

For a complete derivation of this integral representation, the reader is referred to
Appendix A.
In this study, the case has been treated for which there is only a difference in mass density

between the embankment and the surrounding medium.
The more general case with contrasts in both density and Lam!e parameters runs along similar

lines but more effort is required to account for the source term in the constitutive relation. The
numerical computation becomes considerably more difficult and thus more time consuming.
Integral representations for this case (for a stationary source) are also given by Pao and
Varatharajulu [7] and Tan [8].

2.4. Solution of the integral equation

Eq. (27) is a domain-integral equation if the observation point ðy; zÞ is located in D>: It is a
Fredholm integral equation of the second type, and it can be written as follows:Z

D>
dy0dz0fdjkdðy � y0Þdðz � z0Þ

� Drðy0; z0Þo2 *uG
jkðp

7
1 ; y � y0; z; z0Þg *ukðp7

1 ; y0; z0Þ

¼ *uinc
j ðp7

1 ; y; zÞ ððy; zÞAD>Þ: ð28Þ

This equation can be solved with the method of moments. This method consists of several
steps. First, a discretization of the contrast region D> is performed. Then, an appropriate
choice of expansion and weighing functions is made and finally the expansion coefficients are
calculated.
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The discretization of the contrast region is obtained by using a uniform square mesh with grid
size d: The expansion functions are chosen such that

*ukðp7
1 ; y; zÞ ¼

XM
p¼1

XN

q¼1

a
ðpqÞ
k fðpÞðyÞfðqÞðzÞ: ð29Þ

The functions fðpÞðyÞ are defined by

fðpÞðyÞ ¼
1 yðpÞ�oyoyðpÞþ;

0 otherwise

(
ð30Þ

with yðpÞ7 ¼ yðpÞ7d=2: Similar forms are obtained for functions fðqÞðzÞ: Co-ordinates ðyðpÞ; zðqÞÞ
denote the centre of the square grid cell. The weighing functions are chosen to be Dirac delta
pulses

xðmÞðyÞ ¼ dðy � yðmÞÞ and xðnÞðzÞ ¼ dðz � zðnÞÞ: ð31Þ

In this way, the discretized version of Eq. (28) can be written as a two-dimensional linear
equation, which reads

XM

p¼1

XN

q¼1

G
ðmn;pqÞ
jk a

ðpqÞ
k ¼ c

ðmnÞ
j ; ð32Þ

where the summation convention is understood for lower indices. In Eq. (32), matrix G
ðmn;pqÞ
jk is

given by

G
ðmn;pqÞ
jk ¼

Z Z
y0;z0

dy0dz0xðmÞðy0ÞxðnÞðz0Þ
Z Z

*y;*z
d *y d*zfðpÞð *yÞfðqÞð*zÞ

� fdðy0 � *yÞdðz0 � *zÞdjk � Drð *y; *zÞo2 *uG
jkðp1; y

0 � *y; z0; *zÞg

¼ djkdpmdnq �
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2 *uG

jkðp1; y
ðmÞ � *y; zðnÞ; *zÞ: ð33Þ

For the determination of the coefficients of matrix G
ðmn;pqÞ
jk ; expressions for *uG

jk are needed for all
combinations of source and receiver points. In a previous article by the authors [6], a method was
developed for determining the tensor *uG

jk: The calculation is performed by transforming from the
spatial y-domain to the slowness p2-domain. The slowness transform is defined by

*uG
jkðp1; y; z; z

0Þ ¼
o
2p

Z
p2

dp2e
jop2y **uG

jkðp1; p2; z; z
0Þ; ð34Þ

where **uG
jk is the double-slowness transform of the displacement uG

jk: Using this slowness
representation of the Green’s function, matrix G

ðmn;pqÞ
jk can be expressed as

G
ðmn;pqÞ
jk ¼ djkdpmdnq �

Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2

�
o
2p

Z
p2

dp2e
jop2ðyðmÞ� *yÞ **uG

jkðp1; p2; z
ðnÞ; *zÞ: ð35Þ
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In general, the last integrand in Eq. (35) decays rapidly as a function of slowness p2: However,
when the vertical source co-ordinate zðqÞ is located at or in the neighbourhood of the observer
point zðnÞ; a slow decay occurs as a function of p2 and, thus, computation of the integral can be
very time-consuming. In order to improve the numerical performance, the Green’s tensor **uG

jk;
occuring in Eq. (35), is investigated in more detail here. The Green’s tensor for the layered elastic
medium can be approximated by the Green’s tensor for the unbounded homogeneous medium
when the observation point is close to the source. Therefore, Eq. (35) can be rewritten as

G
ðmn;pqÞ
jk ¼ djkdpmdnq �

Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2

�
o
2p

Z
p2

dp2e
jop2ðyðmÞ� *yÞ½**uG

jkðp1; p2; z
ðnÞ; *zÞ � **gjkðp1; p2; zðnÞ; *zÞ


�
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2½ *gjkðp1; yðmÞ � *y; zðnÞ; *zÞ
; ð36Þ

where **gik is the Green’s tensor for the unbounded homogeneous medium in the slowness domain,
and tensor *gjk is the Green’s tensor for the unbounded homogeneous medium in the ðp1; y; zÞ-
domain. The relation between the two tensors is given by

*gikðp1; yðmÞ � *y; zðnÞ; *zÞ ¼
o
2p

Z
p2

dp2e
jop2ðyðmÞ� *yÞ **gjkðp1; p2; zðnÞ; *zÞ: ð37Þ

For the Green’s tensor of the unbounded homogenous medium in both the slowness and spatial
domain, analytical expressions can be found, which are given in Appendix B.
By subtracting the tensor for the unbounded homogeneous medium **gik; the tail of the tensor

**uG
jk; in terms of p2; is removed analytically. Consequently, long numerical computations are
avoided for this term. The computation of the last term in Eq. (36) can be performed analytically
after a small modification of the integration area. This is explained in the second part of the
paragraph following Eq. (41). Fig. 2 serves as an illustration that the Green’s tensor for the
layered half-space can be approximated by the Green’s tensor of the unbounded homogenous
medium. In Fig. 2a, the Green’s tensor elements **uG

33 and **g33 are plotted and in Fig. 2b, the
difference is shown in detail, where a fast decay is observed. Subsequently, the inverse slowness
transform with respect to the y co-ordinate has to be performed which is computed numerically.
By assuming that the density of the embankment is piecewise constant, and interchanging the

integration order of the spatial integration and the inverse-slowness transformation, Eq. (36) can
be rewritten as

G
ðmn;pqÞ
jk ¼ djkdpmdnq � DrðpqÞo2 o

2p

Z
p2

dp2

Z yðpÞþ

yðpÞ�
d *ye jop2ðyðmÞ� *yÞ

"

�
Z zðqÞþ

zðqÞ�
d*zð**uG

jkðp1; p2; z
ðnÞ; *zÞ � **gjkðp1; p2; zðnÞ; *zÞÞd

2

þ
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*z *gjkðp1; yðmÞ � *y; zðnÞ; *zÞ

#
; ð38Þ
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where DrðpqÞ is the density contrast in grid point ðyðpÞ; zðqÞÞ: The integration over the *z co-ordinate
in the first integral on the right-hand side of Eq. (38) can be performed using the midpoint rule.
The integration over the interval *y can be performed analytically. The result reads

G
ðmn;pqÞ
jk ¼ djkdpmdnq � DrðpqÞo2 o

2p

Z
p2

dp2
sinðop2d=2Þ
op2d=2

"

�ð**uG
jkðp1; p2; z

ðnÞ; zðqÞÞ � **gjkðp1; p2; zðnÞ; zðqÞÞÞd2

þ
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*z *gjkðp1; yðmÞ � *y; zðnÞ; *zÞ

#
: ð39Þ

Regarding the second integral on the right-hand side of Eq. (39), the integration of *gjk over the
square area cannot be performed analytically in a straightforward manner. This is illustrated for
the integration of tensor element *g11; a similar procedure can be applied for the other tensor
elements. For this element, the second integral on the right-hand side of Eq. (39) becomesZ yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*z *g11ðp1; yðmÞ � *y; zðnÞ; *zÞ

¼
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*z

1

b2
*Gbðp1; yðmÞ � *y; zðnÞ; *zÞ

�

þ p21ð *Gaðp1; yðmÞ � *y; zðnÞ; *zÞ � *Gbðp1; yðmÞ � *y; zðnÞ; *zÞÞ
	
; ð40Þ

with

*Gaðp1; y; z; *zÞ ¼
j

4
H

ð1Þ
0 ðo *qarÞ and *Gbðp1; y; z; *zÞ ¼

j

4
H

ð1Þ
0 ðo *qbrÞ; ð41Þ
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Fig. 2. (a) Green’s tensor element as a function of slowness p2 ðp1 ¼ 0:0440 s=m; z ¼ 0:25 m; and z0 ¼ 0:75 m). The
solid line denotes the Green’s tensor for a stratified half-space and the dashed line denotes the equivalent element for an

unbounded homogeneous space. (b) Difference between the same tensor elements on a linear scale (solid line) and the

Green’s tensor for the stratified medium (dashed).
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where *qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 � p21

q
and *qb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=b2 � p21

q
and r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðz � *zÞ2

q
: Thus, the Green’s tensor

element consists of zeroth-order Hankel functions of the first kind. For this type of function, the
two integrals can be evaluated numerically, but these calculations may be very lengthly. When
performing the numerical integration, it is also necessary to account for the singularities. These
singularities exist when the observation point is in the centre of the cell over which the integration
is performed (i.e., when m ¼ p and n ¼ q in Eq. (40)). For square regions of integration, no closed
form relations for the integrals are known. This problem can be avoided, by substituting the
square area by a circular one which occupies an area of the same size. For this type of area, the
closed form solution of a Hankel function over a domain integration readsZ 2p

0

Z d=
ffiffi
p

p
0

j

4
H

ð1Þ
0 ðo *qRðmnÞÞrðpqÞdrðpqÞdy

¼
j

2ðo *qÞ2

ffiffiffi
p

p
o *qdHð1Þ

1 ðo *qd=
ffiffiffi
p

p
Þ þ 2j if m ¼ p and n ¼ q;ffiffiffi

p
p

o *qdJ1ðo *qd=
ffiffiffi
p

p
ÞHð1Þ

0 ðo *qRðmnpqÞÞ otherwise;

(
ð42Þ

where RðmnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð *y � yðmÞÞ2 þ ð*z � zðnÞÞ2

q
and rðpqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð *y � yðpÞÞ2 þ ð*z � zðqÞÞ2

q
and y is the polar co-

ordinate based on a co-ordinate origin at the centre of cell. The distance between the two centre

point of the cells ðyðmÞ; zðnÞÞ and ðyðpÞ; zðqÞÞ is denoted by RðmnpqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyðmÞ � yðpÞÞ2 þ ðzðnÞ � zðqÞÞ2

q
:

For further details, the reader is referred to Richmond [9] or Zwamborn and Van den Berg [10].
In this case, the matrix elements on the left-hand side of Eq. (32) can be computed. It remains to

compute the right-hand side of the equation, which follows from direct integration:

c
ðmnÞ
j ¼

Z Z
y0;z0

dy0dz0xðmÞðy0ÞxðnÞðz0Þ *uinc
j ðp1; y0; z0Þ ð43Þ

¼ *uinc
j ðp1; yðmÞ; zðnÞÞ: ð44Þ

Finally, the expansion coefficients a
ðpqÞ
k can be calculated by solving the linear system of

equations (32). Once these coefficients have been obtained, the displacements in the embankment
can be obtained from Eq. (29), and thus the total wave field in an arbitrary point can be
constructed by computing the displacement in the slowness domain via Eq. (27) and then in the
spatial domain via Eq. (10), followed by a computation of the total field with the aid of Eq. (6).
The response in the time domain is obtained after inverse Fourier transformation of the result.

3. Results

Numerical computations have been performed to investigate the influence of the density
contrast in the embankment on the vibration level and they have been compared with
experimental data from a field experiment. Three receiver lines were laid out, two parallel to the
track (one located at the rail embankment and one far from it) and one perpendicular to it. In
Fig. 3, the cross-section of the geometry at the test site is shown. The rail pads lie over a
rectangular embankment, the width of which is about 30 m and the height about 2 m: Parallel
to the track, at a distance of about 15 m; a small filled ditch is located with a width of about 2 m:
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In Fig. 4a, a seismogram of a train passage, recorded by the perpendicular line, is displayed. In the
seismogram, vertical velocity has been displayed as a function of time and distance.
Some interesting features can be observed in these data. First, in the embankment, it is observed

that waves contain much higher frequencies than in the meadow. This can also be seen in Fig. 4b,
where the frequency spectrum of the data has been displayed. This can be observed more clearly in
the frequency spectra of two separate traces, displayed in Fig. 5a and b. Fig. 5a shows the
spectrum of a trace, recorded by a receiver that is located on the embankment. Fig. 5b shows
the spectrum of one trace in the meadow. One can clearly see that the dominant frequencies of
the waves in the embankment lie at about 25 and 45 Hz; while the dominant frequencies in the
meadow are between 2 and 15 Hz: This phenomenon can be explained by the presence of the
ditch, which seems to behave as a low-pass filter. It also seems that the embankment behaves like a
waveguide; waves, and especially waves containing high frequencies, are reflected by the side of
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Fig. 3. Cross-section of the geometry at the test site. The rail pads lie over an embankment. At the side of the

embankment, a small ditch is located.
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Fig. 4. Seismogram of the particle velocity (a) and its frequency spectrum. (a) Shows the vertical velocity recorded by

the perpendicular line, with the zero traces showing the location of the ditch. A strong decay of higher frequencies is

observed across the ditch. (b) Also shows this effect; in the embedding medium, low-frequency waves are dominant.
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the embankment and are trapped in the embankment (see both Fig. 4a and b). This feature can be
observed even more clearly in Fig. 6, where the low-pass filtered data (Fig. 6a) and the high-pass
filtered data (Fig. 6b) are shown. Due to this ‘waveguiding’ behaviour a strong vibration pattern
of high-frequency waves can be observed in the embankment.

ARTICLE IN PRESS

0 10 20 30 40 50 60

0

0 10 20 30 40 50 60

0

frequency [Hz]

frequency [Hz]

sp
ec

tr
um

sp
ec

tr
um

(a)

(b)

Fig. 5. Frequency spectrum of the recorded signal: (a) in the embankment at a distance of 3 m from the track, (b) in the

meadow at a distance of 19 m from the track. Both figures are displayed on the same scale. In the embankment, high
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conclusion can be drawn that for low frequencies, waves are not attenuated by the ditch.

0.5

tim
e 

[s
]

tim
e 

[s
]

1.0

1.5

2.0

5 10 15
trace number

0.5

1.0

1.5

2.0

5 10 15
trace number

(a) (b)

Fig. 6. Detail of response of the embankment. In (a), the low-pass filtered experimental data has been displayed, in

(b) the high-pass filtered data. One can observe that especially the high-frequency waves are reflected from the boundary

of the embankment. Reflected waves are indicated by arrows pointing to the left.
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These experimental results were computed with the modelled ones. First, an assumption on the
near-surface model has to be made. The medium, surrounding the embankment, has been
modelled by a single layer situated on top of a homogeneous substratum. The top layer is assumed
to be about 9 m deep and the soil parameters have been chosen such that the shear wave travels
with a speed of 60 m=s and the compressional wave with a speed of 325 m=s: The density is taken
to be 1800 kg=m3: In the substratum, the wave speeds are 380 and 1650 m=s for the shear and
compressional waves, respectively. Here, the density is taken to be 2000 kg=m3: The damping in
both media is about 5%. These values are considered to be characteristic for typical Dutch soil
conditions, and match the conditions of the location of this experiment and an earlier performed
experiment (see Ref. [6]).
In general, a rail embankment can be characterized by its two wave speeds. In an embankment

consisting of sand, the compressional wave travels with a speed of about 400–600 m=s and the
shear wave with a speed of about 100–150 m=s: Generally, these wave speeds are determined by
three variables, namely by the mass density and two Lam!e parameters. In our case, the Lam!e
parameters of the embankment are equal to the ones in the top layer, and cannot be varied.
Hence, proper estimates for both wave speeds can only be obtained by tuning the mass density of
the embankment in the model, which will be difficult in general as the ratio between shear and
compressional wave speeds varies for different soils. Therefore, another criterion than a match
between the wave speeds of the actual embankment and the modelled one is employed here,
namely the ‘waveguiding’ behaviour of the embankment. It has been shown that the embankment
behaves as a waveguide, which can only be achieved in our modelling if the wave speeds in the
embankment are assumed to be lower than in the embedding medium. Consequently, for the
characterization of the embankment, its density has to be chosen to be higher than the density of
its surroundings. In the model, the shear wave speed of the embankment is about 30 m=s and the

ARTICLE IN PRESS

0

2

4

6

8

tim
e 

[s
]

10 20 30 40
distance [m]

5

10

15

20

25

30

35

fr
eq

ue
nc

y 
[H

z]

10 20 30 40
distance[m]

(a) (b)

Fig. 7. Seismograms of the modelled particle velocity from a oscillating source (oc ¼ 6:3 � 2p) moving at a speed of

25 m=s (see also Ref. [6]). (a) Shows the vertical velocity in the perpendicular line. A strong decay of higher frequencies

is observed across the boundary of the embankment. (b) Shows the frequency spectrum of the data.
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compressional wave speed is about 162:5 m=s (both being relatively slow). The embankment is
modelled by a rectangular geometry, having a width of 16 m and a depth of 2 m:
In Fig. 7, the simulated response is shown; Fig. 7a shows vertical velocity as a function of time

and distance perpendicular to the track. Clearly, some differences can be observed between the
simulated and the experimental response (see Fig. 4), but some qualitative similarities can be
observed too.
To start with the last: in Fig. 7a, one can see the surface waves travel with equal wave speeds as

in the seismogram of Fig. 4a. Similar wave patterns can be observed and the arrival of different
carriages can be seen. It is also seen that the waves in the embankment show a larger amplitude
than in the meadow. Moreover, reflections from the boundary of the embankment are visible,
especially for the high-frequency waves. In the meadow, the waves mainly contain low
frequencies, similar to those observed in the experimental data. This can be observed even more
clearly in Fig. 7b, where the frequency spectrum of the velocity field has been displayed. Thus, in
both the modelled data and the experimental results, the ‘waveguiding’ behaviour of the
embankment can be observed. Overall, the modelled data show a reasonable, qualitative
agreement with the experimental data.
Since a qualitative agreement has been observed, the modelled results can now be investigated

more closely, which might provide some qualitative insight into the effect of a rail embankment.
In Fig. 8a, a surface display of the total wave field (sum of scattered and incident field) at one
instant of time as a function of the horizontal co-ordinates (a snapshot) is shown. Here, the train
has been modelled as a single source, oscillating with one resonance frequency of 6:3 Hz and
moving at a speed of 25 m=s: This speed is slower than the slowest waves in the embedding
medium and the embankment. In Fig. 8b, a snapshot of the incident wave field is shown. Both
snapshots are displayed on the same scale. In Fig. 8a, one can clearly observe effects which are
caused by the properties of the embankment, when comparing it to the undisturbed field in
Fig. 8b. Inside the embankment, the wave field contains higher frequencies and in the embedding
medium, mainly low-frequency waves are noticeable. Moreover, it can be observed that at large

ARTICLE IN PRESS

-40
-20

0
20

40

-40

-20

0

20

40

0

5

10
x 10

-8

Distance along track [m]

Distance along track [m]
Distance from track [m]

Distance from track [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

-40
-20

0
20

40

-40

-20

0

20

40

0

5

10
x 10

-8

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

(a) (b)

Fig. 8. Surface display of the modelled vertical displacements at one instant of time as a function of the horizontal co-

ordinates (snapshot) for a train (single source) moving at a speed of 25 m=s (sub-critical). In (a), the total field has been
displayed, in (b), the incident field is shown. Both figures are displayed on the same scale.
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distances from the source, the vibrations are more pronounced now. In both Figures, one observes
waves propagating forward, ahead of the train, and waves propagating backward, behind the
train. It is clearly seen that waves propagating forward are more compressed than the waves
propagating backward, which is due to the well-known Doppler shift. The snapshot displayed in
Fig. 8a is comparable to the snapshot of the total wave field in Ref. [11, p. 280, Fig. 9.15], where
Krylov discusses the influence of an embankment and has accounted for its inner reflections of an
embankment by using a specific Green’s function for elastic media with an embankment in his
model. The differences are mainly caused by the difference in resonance frequency, but the
qualitative agreement between the different methods is clear.
In Fig. 9a, a snapshot of the total wave field is shown, this time for a train running at a speed of

75 m=s; being faster than the shear wave speeds in both the top layer of the embedding medium
and the embedding. In Fig. 9b, the incident wave field is shown. Again, the scales of both figures
are the same, and similar to the scales in Fig. 8. Due to the super-critical speed of the train, one
can clearly observe the cone-shaped profile of waves propagating away from the track behind
the source like a shock wave. Here, the effect of the rail embankment on the vibration level in the
surrounding soil can also be clearly seen. The snapshot displayed in Fig. 9a is comparable to the
snapshot of the total wave field in Ref. [11, p. 280, Fig. 9.16].
The conclusion can be drawn that with a density contrast the waveguiding behaviour of an

embankment can be modelled in a qualitative way. Although the results show a good agreement,
modelling the velocity contrasts only by means of a density contrast is in some sense in
contradiction with one’s concept of reality, since the densities can have surrealistic values.
Moreover, with a mass density contrast, the ratio between P-waves and S-waves cannot be varied,
which is required when modelling a ditch. In water this ratio tends to infinity. In order to be able
to vary the ratio between compressional and shear waves, which enables us to model ditch-like
geometries for example, the model has to be extended to take the contrasts in Lam!e parameters
into account.
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Fig. 9. Snapshot of the modelled vertical displacements for a train (single source) moving at a speed of 75 m=s: This
train speed is higher than the speed of the Rayleigh wave in the surrounding medium and the embankment. In (a), the

total field has been displayed and in (b), the incident field is shown. One can see the effect of the rail embankment. The

cone-shape wave propagation behaviour is due to the super-critical speed of the source. Scales are similar to the scales

in Fig. 8.
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4. Conclusions

In this paper, an experimental and theoretical analysis is presented of the effect of a rail
embankment on the vibrations generated by moving trains. The theoretical results are
obtained for embankments with a density contrast relative to a layered embedding medium.
The scattered field is computed from a domain-type integral equation which is solved using the
method of moments. The calculations can be performed efficiently using a slowness-domain
method.
It is concluded that the modelled results show a qualitative agreement with the experimental

results. In both measured and modelled data, internal reflections of surface waves in the
embankment can be observed, especially of the high-frequency waves.
Taking into account a contrast in Lam!e parameters is necessary to vary the ratio between the

compressional and shear wave speeds. Therefore, the next step would be the introduction of
contrasts in Lam!e parameters in the embankment, as a difference between the shear moduli of the
embankment and the embedding medium is assumed to be of great importance for the vibration
level. This scattering problem can be formulated in terms of a boundary-type integral equation,
which is currently under investigation.
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Appendix A. Derivation of the domain-integral representation for a moving source

In this Appendix, the domain-integral representation for a source moving over an embank-
ment with a density contrast is derived. The starting point for this derivation is the
integral representation for a stationary point source, which is given in Eq. (23). It can be
rewritten as

%ujðx; y; zÞ ¼ %uinc
j ðx; y; zÞ

þ o2

Z
D

dVðx0Þðrðy0; z0Þ � rnÞ %u
G
jkðx; y; z; x0; y0; z0Þ %ukðx0; y0; z0Þ: ðA:1Þ
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The wave field for a moving source is now obtained by performing a superposition of wave fields
due to a non-moving source, having appropriate phases (see Eq. (8))

1

c

Z
xs

dxse
jop7

1
xs %ujðx � xs; y; zÞ ¼

1

c

Z
xs

dxse
jop7

1
xs %u

inc
j ðx � xs; y; zÞ

þ
1

c

Z
xs

dxse
jop7

1
xs

Z
D

dV ðx0ÞDrðy0; z0Þo2

� uG
jkðx � xs; y; z;x

0; y0; z0Þ %ukðx0; y0; z0Þ ðA:2Þ

with the mass density contrast given by Drðy0; z0Þ ¼ rðy0; z0Þ � rn: The last equation can be written
as

1

c
e jop7

1
x

Z
%x

d %xe�jop7
1
%x
%ujð %x; y; zÞ ¼

1

c
e jop7

1
x

Z
%x

d %xe�jop7
1
%x
%uinc

j ð %x; y; zÞ

þ
1

c
e jop7

1
x

Z
%x

d %xe�jop7
1
%x

Z
D

dV ðx0ÞDrðy0; z0Þo2



� %u
G
jkð %x; y; z;x

0; y0; z0Þ %ukðx0; y0; z0Þ
o
; ðA:3Þ

with %x ¼ x � xs: The last term on the right-hand side can be rewritten asZ
%x

d %xe�jop7
1
%x

Z
D

dV ðx0ÞDrðy0; z0Þo2
%u

G
jkð %x; y; z; x0; y0; z0Þ %ukðx0; y0; z0Þ

 �

¼
Z

D>
dy0dz0Drðy0; z0Þo2

�
Z
%x

d %xe�jop7
1
%x

Z
x0
dx0

%u
G
jkð %x � x0; y; z; 0; y0; z0Þ %ukðx0; y0; z0Þ; ðA:4Þ

where use has been made of the fact that the integration over the embankment is built up of an
integration along the parallel co-ordinate and the perpendicular co-ordinates. Also, use is made of
the shift-invariance of %uG

jk in the %x direction. Domain D> can be seen as a cross-section of the
embankment (see Fig. 1b).
The two final integrations on the right-hand side in Eq. (A.4) are a slowness transform and a

convolution in space with respect to the direction along the track. It is well known that the
slowness transform of a convolution in space, is a multiplication of the slowness transforms in the
slowness domain. Furthermore, the integrations with respect to %x in Eq. (A.3), are slowness
transforms. With this in mind, the following domain-integral representation in the slowness
domain is found:

1

c
e jop7

1
x *ujðp1; y; zÞ ¼

1

c
e jop7

1
x *uinc

j ðp71 ; y; zÞ þ
1

c
e jop7

1
x

Z
D>

dy0dz0Drðy0; z0Þo2

� *uG
jkðp

7
1 ; y; z; y0; z0Þ *ukðp71 ; y0; z0Þ: ðA:5Þ

Dividing the result by the exponential term and accounting for the shift invariance of the
Green’s tensor with respect to the y co-ordinate, the domain-integral representation for a moving
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source is obtained, given in Eq. (27)

*uiðp7
1 ; y; zÞ ¼ *uinc

i ðp71 ; y; zÞ

þ
Z

D>
dy0dz0Drðy0; z0Þo2 *uG

ikðp
7
1 ; y � y0; z; z0Þ *ukðp

7
1 ; y0; z0Þ: ðA:6Þ

Appendix B. Green’s tensor for the unbounded homogeneous medium

Locally, the Green’s tensor for the layered medium can be approximated by the tensor for an
unbounded homogeneous medium. The Green’s tensor for the layered medium is needed to
determine the Green’s matrix elements, given by Eq. (36)

G
ðmn;pqÞ
jk ¼ djkdpmdnq �

Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2

�
o
2p

Z
p2

dp2e
jop2ðyðmÞ� *yÞ **uG

jkðp1; p2; z
ðnÞ;*zÞ � **gjkðp1; p2; zðnÞ; *zÞ

h i

�
Z yðpÞþ

yðpÞ�
d *y

Z zðqÞþ

zðqÞ�
d*zDrð *y; *zÞo2½ *gjkðp1; yðmÞ � *y; zðnÞ; *zÞ
; ðB:1Þ

where **gik is the Green’s tensor for the unbounded homogeneous medium in the double-slowness
domain, and tensor *gjk is the equivalent of the Green’s tensor for the unbounded homogeneous
medium in the ðp1; y; zÞ-domain, where the relation between the two has been given by

*gikðp1; yðmÞ � *y; zðnÞ; *zÞ ¼
o
2p

Z
p2

dp2e
jop2ðyðmÞ� *yÞ**gjkðp1; p2; zðnÞ; *zÞ: ðB:2Þ

In this Appendix, the elements of the Green’s tensor for the unbounded homogeneous medium are
given. First, the tensor elements **gjk in the double-slowness domain are given. The counterparts in
the single-slowness domain *gjk are then given. For details on wave propagation in elastic solids
and plane wave representations, the reader is referred to De Hoop [12, pp. 413–417, 474–475] and
Aki and Richards [13, pp. 123–133, 194–197].
In the double-slowness domain, the symmetric Green’s tensor elements for the unbounded

homogeneous medium read

**g11ðp1; p2; z; *zÞ ¼
1

m
**Gb þ

p21
r
ð **Ga �

**GbÞ; ðB:3Þ

**g12ðp1; p2; z; *zÞ ¼
p1p2

r
ð **Ga �

**GbÞ; ðB:4Þ

**g13ðp1; p2; z; *zÞ ¼ �
jp1

ro
@zð

**Ga �
**GbÞ; ðB:5Þ

**g22ðp1; p2; z; *zÞ ¼
1

m
**Gb þ

p22
r
ð **Ga �

**GbÞ; ðB:6Þ
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**g23ðp1; p2; z; *zÞ ¼ �
jp2

ro
@zð

**Ga �
**GbÞ; ðB:7Þ

**g33ðp1; p2; z; *zÞ ¼
1

m
**Gb �

1

ro2
@2zð

**Ga �
**GbÞ ðB:8Þ

with

**Gaðp1; p2; z; *zÞ ¼
e joqajz�*zj

�2joqa
and **Gbðp1; p2; z; *zÞ ¼

e joqbjz�*zj

�2joqb
; ðB:9Þ

where qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 � p21 � p22

q
and qb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=b2 � p21 � p22

q
; with Refqa;bgX0 and Imfqa;bgX0:

The Green’s tensor for the unbounded medium in the single-slowness domain, *gjk; can be
constructed by linear combination of zeroth-order Hankel functions of the first kind. The tensor
elements read

*g11ðp1; y; z; *zÞ ¼
1

m
*Gb þ

p21
r
ð *Ga � *GbÞ; ðB:10Þ

*g12ðp1; y; z; *zÞ ¼ �
jp1

ro
@yð *Ga � *GbÞ; ðB:11Þ

*g13ðp1; y; z; *zÞ ¼ �
jp1

ro
@zð *Ga � *GbÞ; ðB:12Þ

*g22ðp1; y; z; *zÞ ¼
1

m
*Gb �

1

ro2
@2yð *Ga � *GbÞ; ðB:13Þ

*g23ðp1; y; z; *zÞ ¼ �
1

ro2
@y@zð *Ga � *GbÞ; ðB:14Þ

*g33ðp1; y; z; *zÞ ¼
1

m
*Gb �

1

ro2
@2zð *Ga � *GbÞ ðB:15Þ

with

*Gaðp1; y; z; *zÞ ¼
j

4
H

ð1Þ
0 ðo *qarÞ and *Gbðp1; y; z; *zÞ ¼

j

4
H

ð1Þ
0 ðo *qbrÞ; ðB:16Þ

where *qa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=a2 � p21

q
and *qb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=b2 � p21

q
; with Ref *qa;bgX0 and Imf *qa;bgX0; and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ ðz � *zÞ2

q
:

This concludes the definition of the elements of **gjk and *gjk; respectively.

References

[1] V.V. Krylov, Vibrational impact of high-speed trains. I. Effect of track dynamics, Journal of Acoustic Society of

America 100 (1996) 3121–3134.

[2] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a harmonic load acting on a railway track,

Journal of Sound and Vibration 225 (1999) 3–28.

ARTICLE IN PRESS

A. Ditzel, G.C. Herman / Journal of Sound and Vibration 271 (2004) 937–957956



[3] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a load moving along a railway track, Journal of

Sound and Vibration 228 (1999) 129–156.

[4] A.S.J. Suiker, R. de Borst, C. Esveld, Critical behaviour of a Timoshenko beam-half plane system under a moving

load, Archives of Applied Mechanics 68 (1998) 158–168.

[5] A.V. Metrikine, K. Popp, Vibration of a periodically supported beam on an elastic half-space, European Journal of

Mechanics A/Solids 18 (1999) 679–701.

[6] A. Ditzel, G.C. Herman, G.G. Drijkoningen, Seismograms of moving trains: comparison of theory and

measurements, Journal of Sound and Vibration 248 (2001) 635–652.

[7] Y.H. Pao, V. Varatharajulu, Huygen’s principle. Radiation conditions, and integral formulas for the scattering of

elastic waves, Journal of Acoustic Society of America 59 (1976) 1361–1371.

[8] T.H. Tan, Scattering of elastic waves by elastically transparent obstacles (integral-equation method), Applied

Science and Research 31 (1975) 29–51.

[9] J.H. Richmond, Scattering by a dielectric cylinder of arbitrary cross section, IEEE Transactions on Antennas

Propagation AP-13 (1965) 334–341.

[10] P. Zwamborn, P.M. van den Berg, A weak form of the conjugate gradient FFT method for two-dimensional TE

scattering problems, IEEE Transactions on Microwave Theory and Technology 39 (6) (1991) 953–960.

[11] V.V. Krylov, Generation of ground vibration boom by high-speed trains, in: V.V. Krylov (Ed.), Noise and

Vibration from High-Speed Trains, Thomas Telford Publishing, 2001.

[12] A.T. de Hoop, Handbook of Radiation and Scattering of Waves, Academic Press, London, 1995.

[13] K. Aki, P.G. Richards, Quantitative Seismology, Theory and Methods, W.H. Freeman and Company,

San Fransisco, CA, 1980.

ARTICLE IN PRESS

A. Ditzel, G.C. Herman / Journal of Sound and Vibration 271 (2004) 937–957 957


	The influence of a rail embankment on the vibrations generated by moving trains
	Introduction
	Formulation of the problem
	The layered embedding
	Moving sources
	Domain-integral equation formulation
	Solution of the integral equation

	Results
	Conclusions
	Acknowledgements
	Derivation of the domain-integral representation for a moving source
	Green’s tensor for the unbounded homogeneous medium
	References


